条目 哥德巴赫猜想

拼音 gē dé bā hè cāi xiǎng

注音 ㄍㄜ ㄉㄜˊ ㄅㄚ ㄏㄜˋ ㄘㄞ ㄒㄧㄤˇ

哥德巴赫猜想 词语解释

解释
①数论中著名难题之一。1742年,德国数学家哥德巴赫提出:每一个不小于6的偶数都是两个奇素数之和;每一个不小于9的奇数都是三个奇素数之和。实际上,后者是前者的推论。两百多年来,许多数学家孜孜以求,但始终未能完全证明。1966年,中国数学家陈景润证明了“任何一个充分大的偶数都可以表示成一个素数与另一个素因子不超过2个的数之和”,简称“1+2”。这是迄今世界上对“哥德巴赫猜想”研究的最佳成果。②报告文学。徐迟作。1978年发表。数学家陈景润从小酷爱数学。进入厦门大学数学系后,他又与世界著名数学难题--哥德巴赫猜想结下了不解之缘。“文化大革命”中尽管遭到批斗和不公正的待遇,但他仍埋头钻研数学,终于完成了被国际数学界所公认的“陈氏定理”。作品文笔华美,富于哲理。

哥德巴赫猜想 网络解释

百度百科

哥德巴赫猜想 (世界近代三大数学难题之一)

  • 哥德巴赫1742年给欧拉的信中哥德巴赫提出了以下猜想:任一大于2的偶数都可写成两个质数之和。但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题"任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。1966年陈景润证明了"1+2"成立,即"任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和"。
  • 今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。
  • 从关于偶数的哥德巴赫猜想,可推出:任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。